邮箱:A3669372910@163.com
手机:17359299796
电话:17359299796
地址:福建省漳州市龙文区朝阳北路1号办公楼205室
发布时间:2024-04-25 16:06:42 人气:
近日,北京理工大学李锋教授联合华南理工大学李志远教授与中央民族大学郭红莲教授提出了一种利用光致Lamb波在空气中对微米级颗粒进行大通量操控的光声图案化方法。相关成果以“Programmable Photoacoustic Patterning of Microparticles in Air”为题发表于Nature Communications期刊。“光镊”与“声镊”技术各有优劣,光波的波长短,这意味着使用光来操控物体会更精密,而且成熟的光场调控仪器使得“光镊”技术拥有非常高的灵活性。但“光镊”只能操控透明颗粒,并且有破坏细胞活性的风险。而“声镊”较“光镊”具有更大的操控力,但现有的声场调控技术还存在着精度与灵活性不可兼得的问题。由上可以看出,“光镊”与“声镊”技术是可以互补的,研究者因此提出融合“光镊”与“声镊”技术的新手段。华南理工大学的张若钦博士为本文的第一作者,中央民族大学的赵希川硕士和北京理工大学的李金枝硕士为本文的共同第一作者;李锋教授,李志远教授与郭红莲教授为共同通讯作者。 眼球通过光线看见多彩缤纷的世界;听小骨通过振动听见充满生机的声音。我们已经习惯将光和声音当作感知世界的媒介。所以可以理解德国物理学家克莱尼(Ernst Florens Friedrich Chladni)使用克莱尼板演示声波对颗粒的排布、阿瑟·阿什金(Arthur Ashkin)使用激光光束实现对颗粒的捕获带给人们多大的震撼。光和声音能够操控物体本身就足够有趣,这种不需要直接接触物体的操控方法在生物学、医学、化学等领域具有重要应用,吸引了一代又一代人对其进行研究和发展。研究人员将这种利用光进行操控的技术命名为“光镊”,利用声音进行操控的技术命名为“声镊”,意为用光和声音像镊子一样操控物体。“光镊”以及“声镊”技术各有优劣,如果能够做到取长补短,既如同“光镊”一样灵活,又有“声镊”的大操控力,将更有利于非接触操控技术的发展。 研究者提出了空气中可编程的光声排列微粒方法(Programable photoacoustic patterning of microparticles in air, PPAP)。这种方法利用了光声效应和芯片尺度级别的弹性波,具有很高的灵活性、稳定性以及分辨率,结合了全息“光镊”技术以及“声镊”技术的优势。该方法的灵活性来自于数字微镜器件(Digital micromirrors device, DMD)。这种设备可以按照电脑上事先设定的目标图案来控制芯片上的微镜阵列的转动方向,从而将照射于微镜阵列上的均匀脉冲激光光斑有区分地反射到多层膜上。这样,照射到多层膜上的激光带有预定的目标图案。被激光照亮的薄膜区域吸收激光的能量,温度迅速升高,材料发生热膨胀。热膨胀带来的应变激发了多层膜上的弹性波。多层膜下方水层的衰减效果使得弹性波局域在激光照射区域。当微粒位于薄膜上时,弹性波将动能从薄膜传递给微粒。形变越大的区域,颗粒受到的机械力也越大。具有足够动能的微粒可以抵消与薄膜之间的粘附力,从而被推向周围。因为振动强烈的位置被局域在激光图案附近,所以颗粒排布成的图案与激光的图案具有一致性。这一操作能将光学方法的高空间分辨率、高时间刷新频率和声学方法的高生物相容性、大操控力整合在一起。 研究者利用该方法产生特殊的激光图案,实现了对大量粒子的同时操控。例如使用同心圆状激光图案对颗粒进行束缚与输运。
相关推荐